中国漓光

第13卷 第6期

20W放电自加热式铜蒸气激光器

梁宝根 方无忌 张斌元 韩绍琴 尹宪华 崔健力 (中国科学院上海光机所)

提要:本文报道了平均输出功率为 21.5 W、效率为 0.5% 的铜蒸气激光器。测量和分析了该器件的发光性能。

Self-heated 20 W discharge copper vapor laser

Liang Baogen, Fang Wuji, Zhang Binyuan, Han Shaoqin, Yin Xianhua, Cui Jianli

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: Output characteristics of our self-heated discharge dopper vapor laser arc reported. The maximum average power is 20.5 W with an efficiency of 1.5%. Luminescence performances of the device are measured and discussed.

过去的十多年在国外是铜蒸气激光器得 到技术工艺上的突破而达到发展成熟的阶段。目前这种器件正在被广泛地应用于各种 不同领域。国内已有不少单位正在开展这方 面的研究。本文报道了我们采用全部国产元 件试制的 20 W 铜蒸气激光器的结果。

器件结构

器件通常在1300~1600°C高温下工作, 可用外加热或放电自加热方式维持放电管的

图1 器件结构示意图

工作温度。我们选用放电自加热方式,图1为 器件结构示意图。

二、实验与分析

选用 ϕ 35×900 mm 氧化铝管作为 放电 管,充氖气作为缓冲气体。谐振腔由曲率半 径 5m 的 ϕ 50 mm 全反凹 面 镜 和 ϕ 50 mm 透明平面镜组成。用谐振充电和转移式放电 线路激励。充电电容 $O_1 = 4 \sim 6 nF$,锐化电容 $O_2 = 1 \sim 3 nF$,脉冲重复频率 4~10 kO。

在我们的器件上研究了不同放电条件下的电流电压波形。电流脉冲用儒可夫斯基线 圈和无感电阻进行测量,得到相似波形。电流脉冲幅值用标定过的无感电阻测量。在 $C_1=4\,\mathrm{nF},10\,\mathrm{kC},$ 充电电压 $10\,\mathrm{kV}$ 时,测得的电流脉冲幅值为~500 A。图 2 给出在 $10\,\mathrm{kC}$,

收稿日期: 1985年3月11日。

图 2 放电电流(上)和电压波形 工作频率10kHz,工作电容4nF,锐化电容0.5nF, 充电电压 8000V,时标100ns/div,幅度标5V/div, 分压器分压比1000:1

工作频率 6kHz, Ne 压 20 Torr

 $C_1 = 4$ nF, $C_2 = 0.5$ nF, 充电电压 8 kV 时的 放电电流和电压波形。电压 是 用 分 压 比 为 1000:1 的分压器测量的。

图 3 给出了平均输出功率与输入功率的 关系。从图中可见,自低的管壁温度到最佳 温度之间,激光功率随温度升高而增大,这归 因于铜蒸气密度的不断增加。在大于最佳温 度后,激光平均输出功率的下降是峰值电子 温度下降的结果。由于铜原子浓度随管壁温 度增加而增大,其弹性碰撞截面亦随之增大。 当它增大到在与电子碰撞后其电子温度下降 到激发铜原子激光下能级的几率大于其激发 激光上能级的几率后,激光平均输出功率开 始下降。

当输入功率为4300 W时,得到平均输出

图 4 平均输出功率与工作频率的关系曲线 (输入功率为 3900 W)

功率21.5W,效率0.5%。这时若用一短焦 距透镜将光束聚焦,极易将薄钢板烧穿。器件 可在15~20W之间长时间重复稳定工作, 其平均效率0.4%。

实验中也研究了平均输出功率和频率之 间的关系,测量了当输入功率为常数值时它 们之间的变化关系。图4给出了输入功率为 3900 W 时的变化曲线。对于重复频率器件, 其初始亚稳态密度决定了激光器件的参量, 决定了单个激光脉冲的大小。初始亚稳态密 度值随脉冲频率增加而增大,这导致单个激 光脉冲能量逐渐下降。当单个激光脉冲能量 的下降速度小于频率的增长时,激光平均输 出功率随频率增长而增加,反之,则下降。 在这个变化过程中,存在着一个最 佳频率, 在该频率下,激光平均输出功率有最大 值。 这时的亚稳态衰变常数可由频率 的 倒 数 估 计,在我们的情况下约为 150 µs。

此外,还研究了平均输出功率随缓冲气 体氛气压力的变化关系。图5给出输出功率 为3500W时的随压力变化曲线。由图可见, 激光平均输出功率随缓冲气体压力的增加而 下降。这主要归因于气压增高时电子的碰撞 几率增加而导致电子温度下降。另外,当缓 冲气体压力增加时,峰值电流下降,电流脉冲 宽度增加,电子密度因而下降。这就使得电 子碰撞弛豫率下降,初始亚稳密度随之增加,

这也是激光平均输出功率下降的一个原因。

用.W-44光栅单色仪(选用1200条/mm, 闪耀波长为430 nm 的平面光栅)记录放电 时在250~750 nm 波段的放电光谱。随输入 功率逐渐增长重复记录谱线变化的过程。在 Cu-Ne混合气体放电中具有最低激发电位的 原子首先被激发,在低输入功率时,由于放电 管温度较低,铜尚未形成蒸气,放电最先在 Ne 气中进行。当输入功率逐渐增强,氛线亦 加强,同时出现了铜的光谱线。再进一步增 加输入功率,铜和氖的谱线继续增强,且出现 了 CuII 线,说明这时 Cu 已开始电离。在记 录中发现有 Al、Mg、Na、Si 和 Fe 的谱线。

从记录的谱线中对铜谱线进行了较细致 的分析,按能级图定出了各发射谱线的能级 位置,图6给出了由W-44单色仪记录下来 的铜光谱线能级图的一部分。用光电倍增管 IP21和V-1050F示波器测其发光时间波形, 发现这些辐射到达峰值多在微秒时间量级, 亦即大部分是在放电余辉中弛豫到激光上能 级,因此对激光上能级粒子数的聚集无甚贡 献;而各高能级对激光下能级亦有多条辐射 跃迁,其到达峰值的时间亦在微秒量级,由于 亚稳消激活时间在10⁻⁴8左右,因此会对激光 输出产生不利影响。

图 6 铜蒸气激光器中铜原子的部分发射谱线 (铜原子二重态)

用 CCD 电荷耦合器测量了光束截面的 强度分布。图 7(a)给出平均输出功率为 4W 时,在稳定腔(由曲率半径 5m 的凹面全反镜 和平面镜组成)情况下的光强分布。由此强 度分布计算其方向性为~4mrad。选用不同 放大率的非稳腔,使方向性得到改善,图7(b) 给出在放大率 M=10 的非稳腔情况下的光 强分布,由此确定的方向性为~4 mrad。

最后,测量了 510.6 nm 和 578.2 nm 的 激光带宽。用一块 F-P 标准具 (厚度为 7.5 nm,自由光谱区为 13 GHz, 细度 F=156)测 量。将激光束经一光栅分光后选用其高级次 的光束,以使光束强度减弱。令绿光或黄光 通过一毛玻璃, 经一透镜使光束稍许发散后 射入 F-P 标准具。由标准具出射的干涉光束 用一 f=500 nm 的透镜聚焦于其焦平面上, 用无镜头照相机将干涉环拍摄下来。

实验中拍摄了不同氛压下 510.6 nm 和 578.2 nm 线宽的变化,示于图 8 中。从图中 者出,线宽随气压无明显变化。510.6 nm 线

(a) 稳定腔时(凹面镜 $R_1=5m$,平面镜 $R_2=\infty$)

(v) 非稳腔时(凹面镜 B₁=5m,凸面镜 B₂=0.5m)
 图 7 光束截面光强分布图
 (腔距 L=2m)

图 8 510.6 nm 和 578.2 nm 带宽 与 Ne 气压力的关系曲线 输入功率为常数值 (3kW)

宽平均约为7GHz, 578.2nm 线宽约为~11 GHz。

图 9 给出 510.6 nm 和 578.2 nm 的 F-P 干涉环图形。可以清楚地看到,每一环带 都由三个细环组成,细环之间的频率间隔为

> $\Delta \nu_1(GHz)$ $\Delta \nu_2(GHz)$ 510.6 nm ~3 ~2 578.2 nm ~5 ~4

它显然比纵横间隔大许多倍,故出现的环带 不表明是模式结构,而是由铜原子的超精细 结构确定的线型。

天然铜中有两种同位素 63Cu 和 65Cu,其

(a) 510.6 nm

(b) 578.2 nm
 图 9 510.6 nm 和 578.2 nm 干涉环图形
 输入功率 2.5 kW, Ne 压 40 Torr

这种变化也可用电子密度的不同予以解释。

当极间电压变化时, *E/N* 值也会有相应 变化,图12反映了 *E/N* 的变化对耦合度的 影响。当 *E/N* 在 2.8~2.0×10⁻¹⁶V·cm 范 围内变化时,输出功率、截止耦合度都随 *E/N* 值的增大而增大。但最佳耦合度却差别 不大,相差仅 6%,可见 *E/N* 对最佳耦合度

(上接第337页)

比例为 69:31, 两者都具有核自旋。根据超精 细结构分量间允许的跃迁选择 定则 $\Delta F = 0$, ±1(ΔF 为原子态总角动量的变化),并考虑 到两同位素相应能级的磁偶极和电平方极分 裂因子不同,确定出 510.6 nm 线有 18 条和 578.2 nm 有 12 条超精细结构线。按[1]中的 公式计算各分量相对于能级重心的频移。由 [2]中的公式计算各分量间的相对强度。每一 分量都假设是在 T = 1500°C 时的多普勒加 宽线型。计算得到 510.6 nm 和 578.2 nm 线 型分布图(图 10)。图中各垂直线的长度和位 置代表各分量相对强度和位置。由图可见, 两

的影响并不灵敏。

参考文献

[1] 陈丽吟等; 《光学学报》, 1985, 5, No. 2, 135~142.
[2] 陈丽吟等; 《中国激光》, 1984, 11, No. 5, 257~262.

者线型都有三个峰,其频率间隔为: Δν₁(GHz) Δν₂(GHz) 510.6 nm ~2.5 ~2 578.2 nm ~5.3 ~2.8

510.6 nm 三峰强度比较接近,而 578.2 nm 线型中一峰强度明显大于其他两峰。这些估 算结果都与实验相一致,其误差是由计算和 实验上的不精确造成的。实验发现,三峰线 型只在某些条件下出现。

考文献

- H. Kopferman; "Nuclearmoments", Academic Press Inc., New York, 1958.
- [2] E. U. Condon, G. M. Shortley; "The Theory of Atomic Spectro", Cambridge, 1963, p. 424 and 238.

铀的共振三步光电离法通过技术鉴定

ավորով ավարությունը հայտարական անդարական անդարական անդարական անդարական անդարական անդարական անդարական անդարական

中国科学院技术科学部于1985年12月28日 组织对中国科学院上海光机所的铀原子共振三步法 工作进行技术鉴定。

该所利用脉冲放电在铀的空心阴极中产生铀原

子蒸气,用两台可调谐染料激光器进行三光子电离, 观察到铀原子的共振三步光电离。调谐激光器的输 出波长,测量得到一批激发态的光谱线。

(乙民)